750 research outputs found

    On the equivalence of N=1 brane worlds and geometric singularities with flux

    Full text link
    We consider Kaluza Klein reductions of M-theory on the Z_N orbifold of the spin bundle over S^3 along two different U(1) isometries. The first one gives rise to the familiar ``large N duality'' of the N=1 SU(N) gauge theory in which the UV is realized as the world-volume theory of N D6-branes wrapped on S^3, whereas the IR involves N units of RR flux through an S^2. The second reduction gives an equivalent version of this duality in which the UV is realized geometrically in terms of an S^2 of A_{N-1} singularities, with one unit of RR flux through the S^2. The IR is reached via a geometric transition and involves a single D6 brane on a lens space S^3/Z_N or, alternatively, a singular background (S^2\times R^4)/Z_N, with one unit of RR flux through S^2 and, localized at the singularities, an action of their stabilizer group in the U(1) RR gauge bundle, so that no massless twisted states occur. We also consider linear sigma-model descriptions of these backgrounds.Comment: 25 pages, LaTeX; v2: one reference added, published versio

    Relationship of blood pressure, antihypertensive therapy, and outcome in ischemic stroke treated with intravenous thrombolysis: retrospective analysis from Safe Implementation of Thrombolysis in Stroke-International Stroke Thrombolysis Register (SITS-ISTR)

    Get PDF
    <p><b>Background and Purpose:</b> The optimal management of blood pressure (BP) in acute stroke remains unclear. For ischemic stroke treated with intravenous thrombolysis, current guidelines suggest pharmacological intervention if systolic BP exceeds 180 mm Hg. We determined retrospectively the association of BP and antihypertensive therapy with clinical outcomes after stroke thrombolysis.</p> <p><b>Methods:</b> The SITS thrombolysis register prospectively recorded 11 080 treatments from 2002 to 2006. BP values were recorded at baseline, 2 hours, and 24 hours after thrombolysis. Outcomes were symptomatic (National Institutes of Health Stroke Scale score deterioration ≥4) intracerebral hemorrhage Type 2, mortality, and independence at (modified Rankin Score 0 to 2) 3 months. Patients were categorized by history of hypertension and antihypertensive therapy within 7 days after thrombolysis: Group 1, hypertensive treated with antihypertensives (n=5612); Group 2, hypertensive withholding antihypertensives (n=1573); Group 3, without history of hypertension treated with antihypertensives (n=995); and Group 4, without history of hypertension not treated with antihypertensives (n=2632). For 268 (2.4%) patients, these data were missing. Average systolic BP 2 to 24 hours after thrombolysis was categorized by 10-mm Hg intervals with 100 to 140 used as a reference.</p> <p><b>Results:</b> In multivariable analysis, high systolic BP 2 to 24 hours after thrombolysis as a continuous variable was associated with worse outcome (P<0.001) and as a categorical variable had a linear association with symptomatic hemorrhage and a U-shaped association with mortality and independence with systolic BP 141 to 150 mm Hg associated with most favorable outcomes. OR (95% CI) from multivariable analysis showed no difference in symptomatic hemorrhage (1.09 [0.83 to 1.51]; P=0.58) and independence (1.03 [0.93 to 1.10]; P=0.80) but lower mortality (0.82 [0.73 to 0.92]; P=0.0007) for Group 1 compared with Group 4. Group 2 had a higher symptomatic hemorrhage (1.86 [1.34 to 2.68]; P=0.0004) and mortality (1.62 [1.41 to 1.85]; P<0.0001) and lower independence (0.89 [0.80 to 0.99]; P=0.04) compared with Group 4. Group 3 had similar results as Group 1.</p> <p><b>Conclusions:</b> There is a strong association of high systolic BP after thrombolysis with poor outcome. Withholding antihypertensive therapy up to 7 days in patients with a history of hypertension was associated with worse outcome, whereas initiation of antihypertensive therapy in newly recognized moderate hypertension was associated with a favorable outcome.</p&gt

    Present and potential nitrogen outputs from Norwegian soft water lakes ? an assessment made by applying the steady-state First-order Acidity Balance (FAB) model

    No full text
    International audienceThe steady-state First-order Acidity Balance (FAB) model for calculating critical loads of sulphur (S) and nitrogen (N) is applied to 609 Norwegian soft-water lakes to assess the future nitrate (NO3?) leaching potential under present (1992-96) S and N deposition. The lakes were separated into five groups receiving increasing levels of N deposition (-2yr-1). Using long-term sustainable N sink rates presently recommended for FAB model applications, N immobilisation, net N uptake in forests, denitrification and in-lake N retention were estimated for each group of lakes. Altogether, the long-term N sinks constituted 9.9 ± 3.2 to 40.5 ± 11.4 meq m-2yr-1 in the lowest and highest N deposition categories, respectively. At most sites, the current N deposition exceeds the amount of N retained by long-term sustainable N sinks plus the NO3? loss via the lake outlets. This excess N, which is currently retained within the catchments may, according to the FAB model, leach as acidifying NO3? in the future. If these predictions are fulfilled, NO3? leaching at sites in the various N deposition categories will increase dramatically from present (1995) mean levels of 1-20 meq m-2yr-1, to mean levels of 7-70 meq m-2yr-1 at future steady state. To illustrate the significance of such an increase in NO3? leaching, the mean Acid Neutralising Capacity (ANC) at sites in the highest N deposition category may decrease from -18 ± 15 ?eq L-1 at present, to -40 ± 20 ?eq L-1. Under present S and N deposition levels, the FAB model predicts that 46% of the Norwegian lakes may experience exceedances of critical loads for acidifying deposition. In comparison, the Steady-State Water Chemistry model (SSWC), which considers only the present N leaching level, estimates critical load exceedances in 37% of the lakes under the same deposition level. Thus far, there are great uncertainties regarding both the time scales and the extent of future N leaching, and it is largely unknown whether the FAB model predictions will ever be fulfilled. Hence, long-term monitoring and further studies on N immobilisation processes under varying N deposition levels and ecosystem types seem necessary to make better predictions of future NO3? leaching. Keywords: Lakes, hydrochemistry, nitrogen, nitrate, sinks, leaching, acidification, critical loads, FAB mode

    A model realisation of the Jaffe-Wilczek correlation for pentaquarks

    Full text link
    We discuss a realisation of the pentaquark structure proposed by Jaffe and Wilczek within a simple quark model with colour-spin contact interactions and coloured harmonic confinement, which accurately describes the Δ−N\Delta-N splitting. In this model spatially compact diquarks are formed in the pentaquark but no such compact object exists in the nucleon. The colour-spin attraction brings the Jaffe-Wilczek-like state down to a low mass, compatible with the experimental observation and below that of the naive ground state with all SS-waves. We find, however, that although these trends are maintained, the extreme effects observed do not survive the required ``smearing'' of the delta function contact interaction. We also demonstrate the weakness of the ``schematic'' approximation when applied to a system containing a PP-wave. An estimate of the anti-charmed pentaquark mass is made which is in line with the Jaffe-Wilczek prediction and significantly less than the value reported by the H1 collaboration.Comment: 10 pages, uses psfra

    Stroke aetiological classification reliability and effect on trial sample size : systematic review, meta-analysis and statistical modelling

    Get PDF
    BackgroundInter-observer variability in stroke aetiological classification may have an effect on trial power and estimation of treatment effect. We modelled the effect of misclassification on required sample size in a hypothetical cardioembolic (CE) stroke trial.MethodsWe performed a systematic review to quantify the reliability (inter-observer variability) of various stroke aetiological classification systems. We then modelled the effect of this misclassification in a hypothetical trial of anticoagulant in CE stroke contaminated by patients with non-cardioembolic (non-CE) stroke aetiology. Rates of misclassification were based on the summary reliability estimates from our systematic review. We randomly sampled data from previous acute trials in CE and non-CE participants, using the Virtual International Stroke Trials Archive. We used bootstrapping to model the effect of varying misclassification rates on sample size required to detect a between-group treatment effect across 5000 permutations. We described outcomes in terms of survival and stroke recurrence censored at 90days.ResultsFrom 4655 titles, we found 14 articles describing three stroke classification systems. The inter-observer reliability of the classification systems varied from fair' to very good' and suggested misclassification rates of 5% and 20% for our modelling. The hypothetical trial, with 80% power and alpha 0.05, was able to show a difference in survival between anticoagulant and antiplatelet in CE with a sample size of 198 in both trial arms. Contamination of both arms with 5% misclassified participants inflated the required sample size to 237 and with 20% misclassification inflated the required sample size to 352, for equivalent trial power. For an outcome of stroke recurrence using the same data, base-case estimated sample size for 80% power and alpha 0.05 was n=502 in each arm, increasing to 605 at 5% contamination and 973 at 20% contamination.ConclusionsStroke aetiological classification systems suffer from inter-observer variability, and the resulting misclassification may limit trial power.Trial registrationProtocol available at reviewregistry540.Peer reviewe

    Heterotic compactifications and nearly-Kahler manifolds

    Full text link
    We propose that under certain conditions heterotic string compactifications on half-flat and nearly-Kahler manifolds are equivalent. Based on this correspondence we argue that the moduli space of the nearly-Kahler manifolds under discussion consists only of the Kahler deformations moduli space and there is no correspondent for the complex structure deformations.Comment: 5 pages, references added, typos correcte

    M-theory moduli spaces and torsion-free structures

    Get PDF
    Motivated by the description of N=1\mathcal{N}=1 M-theory compactifications to four-dimensions given by Exceptional Generalized Geometry, we propose a way to geometrize the M-theory fluxes by appropriately relating the compactification space to a higher-dimensional manifold equipped with a torsion-free structure. As a non-trivial example of this proposal, we construct a bijection from the set of Spin(7)Spin(7)-structures on an eight-dimensional S1S^{1}-bundle to the set of G2G_{2}-structures on the base space, fully characterizing the G2G_{2}-torsion clases when the total space is equipped with a torsion-free Spin(7)Spin(7)-structure. Finally, we elaborate on how the higher-dimensional manifold and its moduli space of torsion-free structures can be used to obtain information about the moduli space of M-theory compactifications.Comment: 24 pages. Typos fixed. Minor clarifications adde

    Kaluza-Klein bundles and manifolds of exceptional holonomy

    Get PDF
    We show how in the presence of RR two-form field strength the conditions for preserving supersymmetry on six- and seven-dimensional manifolds lead to certain generalizations of monopole equations. For six dimensions the string frame metric is Kaehler with the complex structure that descends from the octonions if in addition we assume F^{(1,1)}=0. The susy generator is a gauge covariantly constant spinor. For seven dimensions the string frame metric is conformal to a G_2 metric if in addition we assume the field strength to obey a selfduality constraint. Solutions to these equations lift to geometries of G_2 and Spin(7) holonomy respectively.Comment: LaTeX, 13 page

    Asymmetric Hillslope Erosion Following Wildfire in Fourmile Canyon, Colorado

    Get PDF
    Infrequent, high-magnitude events cause a disproportionate amount of sediment transport on steep hillslopes, but few quantitative data are available that capture these processes. Here we study the influence of wildfire and hillslope aspect on soil erosion in Fourmile Canyon, Colorado. This region experienced the Fourmile Fire of 2010, strong summer convective storms in 2011 and 2012, and extreme flooding in September 2013. We sampled soils shortly after these events and use fallout radionuclides to trace erosion on polar- and equatorial-facing burned slopes and on a polar-facing unburned slope. Because these radionuclides are concentrated in the upper decimeter of soil, soil inventories are sensitive to erosion by surface runoff. The polar-facing burned slope had significantly lower cesium-137 (137Cs) and lead-210 (210Pb) inventories (p \u3c 0.05) than either the polar-facing unburned slope or equatorial-facing burned slope. Local slope magnitude does not appear to control the erosional response to wildfire, as relatively gently sloping (~20%) polar-facing positions were severely eroded in the most intensively burned area. Field evidence and soil profile analyses indicate up to 4 cm of local soil erosion on the polar-facing burned slope, but radionuclide mass balance indicates that much of this was trapped nearby. Using a 137Cs-based erosion model, we find that the burned polar-facing slope had a net mean sediment loss of 2 mm (~1 kg m−2) over a one to three year period, which is one to two orders of magnitude higher than longer-term erosion rates reported for this region. In this part of the Colorado Front Range, strong hillslope asymmetry controls soil moisture and vegetation; polar-facing slopes support significantly denser pine and fir stands, which fuels more intense wildfires. We conclude that polar-facing slopes experience the most severe surface erosion following wildfires in this region, indicating that landscape-scale aridity can control the geomorphic response of hillslopes to wildfires. Copyright © 2018 John Wiley & Sons, Ltd

    Supersymmetric M3-branes and G_2 Manifolds

    Get PDF
    We obtain a generalisation of the original complete Ricci-flat metric of G_2 holonomy on R^4\times S^3 to a family with a non-trivial parameter \lambda. For generic \lambda the solution is singular, but it is regular when \lambda={-1,0,+1}. The case \lambda=0 corresponds to the original G_2 metric, and \lambda ={-1,1} are related to this by an S_3 automorphism of the SU(2)^3 isometry group that acts on the S^3\times S^3 principal orbits. We then construct explicit supersymmetric M3-brane solutions in D=11 supergravity, where the transverse space is a deformation of this class of G_2 metrics. These are solutions of a system of first-order differential equations coming from a superpotential. We also find M3-branes in the deformed backgrounds of new G_2-holonomy metrics that include one found by A. Brandhuber, J. Gomis, S. Gubser and S. Gukov, and show that they also are supersymmetric.Comment: Latex, 29 pages. This corrects a previous version in which it was claimed that the M3-brane solutions were pseudo-supersymmetric rather than supersymmetri
    • 

    corecore